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LETTER TO THE EDITOR 

Upper bounds on plasmon dispersion in the degenerate boson 
plasma 

M L Chiofalot, S Contit, S Stringarit and M P Tosit 
t Scuola Normale Superiore, Piazza dei Cavalieri 7, 1-56126 Pisa, Italy 
1 Dipanhento di Fisica, Universitt3 di Trento, 1.38050 Povo, Italy 

Received 28 Novembe; 1994 

Abstract. Sum-rule arguments are used to derive two rigorous upper bounds for the plasmon 
dispersion cume in a fluid of charged bosons at zero tempmure. They are readily evaluated (i) 
Jf long wavelengths. to show that the leading dispersion coefficient is negative at all couplings, 
and (ii) at weak coupling, to obtain a simple analytic upper bound for the whole dispersion 
C U N e .  

Recent work by three of us [l] dealing with the dielectric response of the degenerate fluid 
of charged bosons has emphasized that the compressibility, K ,  of the fluid, entering its 
static dielectric function at long wavelengths, is negative at all values ~~ of the Coulomb 
coupling strength r, > 0. Here, r, is the dimensionless length parameter ro/ao, where ro 
is related to the particle number~density n by ro = (4nn/3)-'/3 and U, is the Bohr radius. 
The inequality K < 0 at r, > 0 is a consequence of the fact that the contribution of 
correlations to the effective interaction between the particles is intrinsically attractive, and 
implies overscreening of a foreign charge and long-range attraction between foreign charges 
in a linear response regime. The inequality is confirmed by the low-r, expansion of the 
ground-state energy given by Brueckner [2]. The available evidence on the ground state 
energy and the static dielectric response from microscopic calculations in the hypernetted- 
chain approximation [3] and from quantum Monte Carlo simulations by Ceperley and Alder 
[4], Sugiyama and coworkers [5] and Moroni (unpublished) explicitly confirms the inequality 
in a wide range of rs.  

As pointed out in [l], further consequence~of the inequality K < 0 is that, on 
calculating the dynamic response of the fluid in an approximation that neglects the frequency 
dependence of the correlation potential, the plasmon dispersion curve U I ~  is found to have 
a leading dispersion coefficient d2wy/dk2[k=o which is negative at all values of r, > 0. 
This implies that the dispersion curve goes through a minimum before approaching the 
free-particle recoil frequency Q = k2/2m at large wavenumber k (h = 1). 

In this letter we show by a sum-rule argument for Bose fluids that the inequality K c 0 
provides a rigorous upper bound d2wk/dkZlt=o i 0 on the leading dispersion coefficient (see 
(8)). We also present an easily calculable analytic formula providing an equally rigorous 
upper bound for the whole dispersion curve wy at small r, (see (1 1)). At long wavelengths, 
this yields the weaker inequality d20k/dk2]k,o 6 0. 

The sum-rule approach has been widely used in the literature to examine various 
dynamic properties of many-body systems (see the work of  Stringari [6,7] and references 
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given therein). Of specific interest in the present context are the rigorous zero-temperature 
inequalities 

and 

for the energy WO of the lowest state excited by the operators A and B ,  H being the 
Hamiltonian of the system. In the inequality (l), X A t , A  is the static response relating to the 
operator A and the numerator expresses the energy-weighted sum rule. The inequality (2) 
is proven by combining (1) with the Bogoliubov inequality [8,9] 

XAt.A([Bt3 [H. B11) I([Ai, B1)12. (3) 

Clearly, (2) provides a less stringent upper bound on the excitation frequency. 
For a Bose superfluid at zero temperature, choosing At = Pk where PIE is the density 

fluctuation operator, equation (1) yields the following inequality on the dispersion relation 
of the lowest collective excitation 

where x ( k ,  0) is the static linear density response function and we have used the f-sum 
rule. ( [ p k ( H ,  p - k ) ] )  = nk2/m.  Choosing At = p k  and B = Qk -a+ where rik and 
are the particle annihilation and creation operators, equation (2) yields the inequality [7] 

t t 

Here, up is the Fourier transform of the interaction potential, p is the chemical potential, LY 

is the fraction of particles in the zero-momentum condensate and 

n(p) = (OIQ$Z,IO) = (2a)3LYns(p) +nt(p)  (6) 

(7) fib) = $(O\Q$IL, +a,a-,jo) = (2Z)3ans(p) +i i l (p)  

where nl (p) and fil (p) refer to the particles out of the condensate. 
In applying equations (4) and (5) to the degenerate fluid of charged bosons neutralized by 

a uniform background we use up =4ne2/p2 (p  # 0) and recall that the plasma frequency 
wpI = (4zne2/m)'I2 at k = 0 is given by 91 = (2n<kIJk)1/2. From equation (4) we then 
obtain 

in the long-wavelength limit k --f 0. This shows that the leading dispersion coefficient is 
necessarily negative at all r, > 0. 
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Figure 1. Graph of the function F ( x )  defined in Figure 2. Plasmon dispersion relation at r, = 1 in 
equation (12). various approximations (from [I]), wmpared with the 

upper bound given by equation (11). The inset gives 
an enlarged view of the small-k region. 

From equation (S), after changing the integration variable to p = p + k and carrying 
out the angular integration, we have 

This expression is readily evaluated in the small-coupling limit r, + 0, where all the 
quantities entering it are known from the early work of Foldy [lo]. His results to lowest 
order in r, are 

and a = 1. Using to the same order of accuracy the value of the chemical potential in the 
random phase approximation (RPA). p = -CI-;'/~ Ryd with C = ( Z / H ) [ : & ( ~  - ( 1  + 
IZ . /X~) - ' /~ )  % 1.003 8483, we  find 

in Rydberg units. We have here introduced the function F(n) ,  which is defined by 

The graph of this function is given in figure 1. In regard to the leading dispersion coefficient 
for the plasmon at long wavelengths from equation (1 l), it is readily seen that F ( x )  tends ' 
to -C for x + 0. Hence, equation (1 1) yields 

dZWk/dk21k,o < 0 (13) 

as an upper bound. 
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The upper bound obtained in equation (1 1) for the plasmon dispersion curve is compared 
in figure '2 at r, = 1 with the results given in [l] on the basis of approximate theories of 
dynamic screening. including the RPA and two f a n s  of (frequency-independent) effective 
correlation potential. Of course, the effect of short-range correlations is to lower the 
excitation energy. We recall in particular that the curve marked VS is evaluated in an 
approximation which takes self-consistent account of the compressibility sum rule and yields 
very close agreement with the available evidence on the compressibility. 

The result in equation (11) is valid only at weak coupling and it would be worth 
carrying the perturbative treatment of the charged boson fluid to the next order in r,, where 
we expect that the upper bound would become more stringent. On the other hand, the VS 
results already provide a more s ~ n g e n t  upper bound on the leading dispersion coefficient 
by virtue of equation (8). This is displayed on an enlarged scale in the inset in figure 2. 

In summary, we have demonstrated a rigorous upper bound on the plasmon dispersion 
relation at small coupling and a more stringent upper bound on the leading dispersion 
coefficient at all couplings. 

This work was sponsored by the Minister0 dell'Universith e della Ricerca Scientifica e 
Tecnologica of Italy through the Istituto Nazionaie di Fisica della Materia. 
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